COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
Authors
Abstract:
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
similar resources
collocation method for fredholm-volterra integral equations with weakly kernels
in this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of fredholm-volterra integral equations (fvies) are smooth.
full textA Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels
The commonly used graded piecewise polynomial collocation method for weakly singular Volterra integral equations may cause serious round-off error problems due to its use of extremely nonuniform partitions and the sensitivity of such time-dependent equations to round-off errors. The singularity preserving (nonpolynomial) collocation method is known to have only local convergence. To overcome th...
full textConvergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
full textWeakly Singular Volterra and Fredholm-volterra Integral Equations
Some existence and uniqueness theorems are established for weakly singular Volterra and Fredholm-Volterra integral equations in C[a, b]. Our method is based on fixed point theorems which are applied to the iterated operator and we apply the fiber Picard operator theorem to establish differentiability with respect to parameter. This method can be applied only for linear equations because otherwi...
full textA computational method for nonlinear mixed Volterra-Fredholm integral equations
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
full textMy Resources
Journal title
volume 1 issue 1 (WINTER)
pages 59- 68
publication date 2011-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023